STABILISATION OF THE NOVEL GOLD-CATIONS Au²⁺ AND Au(CO)²⁺ IN SUPERACIDS

F. Aubke^a, G. Hwang^a, J. Schaebs^b, and H. Willner^b

a University of British Columbia, 2036 Main Mall, Department of Chemistry, Vancouver, B.C. V6T 1Z1, Canada

b Institut für Anorganische Chemie der Universität Hannover, Callinstraße 9, W-3000 Hannover 1, F.R.G.

The solution of gold tris(fluorosulfate), $Au(SO_3F)_3$, in fluorosulfuric acid, HSO_3F , is a very strong monoprotonic superacid [1]. In this system gold(III) can be reduced under mild conditions by CO [2] or gold metal [3]. The reduction of $Au(SO_3F)_3$ with CO is described by the overall reaction:

$$2 \text{ Au}(SO_3F)_3 + 3 \text{ CO}$$
 $---- [\text{Au}(CO)_2]^+ + SO_3F^- + S_2O_5F_2 + CO_2$

The action of gold metal on $Au(SO_3F)_3$ in HSO_3F yields the solvated Au^{2+} cation, which has been characterised by ESR spectra. The ESR signal is strongly dependent on the $Au^{2+}/Au(SO_3F)_3$ ratio. From the saturated solution a red-yellow precipitate of diamagnetic $Au[Au(SO_3F)_4]$ is formed at room temperature. Paramagnetic Au^{2+} ions are also generated as lattice defects in solid $Au(SO_3F)_3$ by pyrolysis. The resulting materials are studied by ESR and magnetic susceptibility measurements and represent together with $Au^{2+}_{(Solv)}$ the first unambiguous evidence for the existence of true Au^{2+} cations.

In addition, a solid complex is obtained where $[Au(CO)_2]^+$ is stabilised by $Sb_2F_{11}^-$. The linear cation $[Au(CO)_2]^+$ is fully characterized by IR-, Raman- and ^{13}C -NMR-spectroscopy. The CO stretching frequencies for $[Au(CO)_2]^+$ are the highest reported so far. Its force field is compared to those of other carbonyls and the dicyanoaurate(I) ion, $[Au(CN)_2]^-$. The kinetics of the CO-exchange of $[Au(CO)_2]^+$ in HSO₃F-solution has been studied.

- 1 Lee, K.C.; Aubke, F. Inorg. Chem. 1979, 18, 389.
- 2 Willner, H.; Aubke, F. Inorg. Chem. 1990, 29, 2195.
- 3 Willner, H.; Mistry, F.; Hwang, G.; Herring, F.G.; Cader, M.S.R.; Aubke, F. J. Fluorine Chem., 1991, 52, 13.